Synthesis and X-ray Structure of the Monocarbon Rhodacarborane Complex [RhBr(PPh₃)(η⁵-7-NH₂Bu^t-8-CH₂CO₂Et-7-CB₁₀H₉)][†]

John C. Jeffery,[‡] Paul A. Jelliss,[§] Vyacheslav N. Lebedev,^{§,||} and F. Gordon A. Stone^{*,§}

> Department of Chemistry, Baylor University, Waco, Texas 76798-7348, and School of Chemistry, The University, Bristol BS8 1TS, U.K.

> > Received April 25, 1996

Introduction

The selective introduction of functional groups on the carbon and boron vertices of the polyhedral carboranes and metallacarboranes is a topic of continued interest. Although attachment of functional groups to the carbon vertices is well developed, our knowledge of species where substitution has occurred at the BH vertices is much more limited.^{1,2} We recently reported the synthesis and some reactions of the charge-compensated 16electron rhodacarboranes [RhX(PPh₃)(η^{5} -7-NH₂Bu^t-7-CB₁₀H₁₀)] (X = Br (**1a**) or Cl (**1b**)).³ Conceivably the electronically unsaturated metal centers in these complexes might provide a pathway for substitution at the BH vertices through initial coordination of a reactive organic fragment in a preliminary step.

Results and Discussion

The reagents **1** readily react with one mol equiv. of the diazoalkane N₂C(H)CO₂Et in CH₂Cl₂ to afford the complexes [RhX(PPh₃)(η^{5} -7-NH₂Bu^t-8-CH₂CO₂Et-7-CB₁₀H₉)] (X = Br (**2a**), or Cl (**2b**)) in good yield. These products arise from

insertion of a C(H)CO₂Et moiety into a BH bond of the cage.

Figure 1. Molecular structure of $[RhBr(PPh_3)(\eta^5-7-NH_2Bu^t-8-CH_2-CO_2Et-7-CB_{10}H_9)]$ (**2a**) showing the crystallographic labeling scheme. Hydrogen atoms have been omitted for clarity, and thermal ellipsoids are at the 50% probability level.

As far as we are aware, these are the first examples of insertion of an organic fragment into a BH bond of a monocarbon carborane.

The molecular structure of 2a was established by X-ray diffraction. The molecule is shown in Figure 1, and selected bond distances and angles are listed in Table 1. The rhodium atom is coordinated by the Br [Rh-Br 2.5116(5) Å] and PPh₃ [Rh–P 2.3492(8) Å] groups, with bond lengths similar to those found for these ligands in **1a** [Rh-Br 2.5165(9), Rh-P 2.334(2) Å].³ Interest centers on the carborane cage system coordinated in the η^5 -bonding mode to the rhodium. As expected the carbon atom of the CBBBB ring carries the NH₂Bu^t group [C(1)-N 1.501(3) Å], as it does in the precursor 1a [C(1)-N 1.488(7)]Å]. However, significantly the CH_2CO_2Et substituent [B(5)-C(6) 1.643(4) Å] is attached to one of the two boron atoms adjacent to the carbon in the CBBBB ring, so that evidently insertion of the C(H)CO₂Et unit occurs preferentially at one or other of the CB_{α} sites, either of which would yield enantiomers of the same product. Presumably the pathway for the reaction involves formation of a coordinatively and electronically saturated intermediate complex $[RhX{C(H)CO_2Et}(PPh_3)(\eta^5 -$ 7-NH₂Bu^t-7-CB₁₀H₁₀)], followed by insertion of the alkylidene ligand into an adjacent BH bond of the 2,1-RhCB₁₀ framework. There is ample precedent for such a process from earlier work.⁴ The distances between the rhodium atom in 2a and the atoms of the CB₄ ring [Rh-C(1) 2.243(2), Rh-B(2) 2.142(3), Rh-B(3) 2.156(3), Rh-B(4) 2.191(3), Rh-B(5) 2.135(3) Å] differ insignificantly from the analogous parameters for 1a [Rh-C(1) 2.240(5), Rh-B(2) 2.129(6), Rh-B(3) 2.182(6), Rh-B(4) 2.179(6), Rh-B(5) 2.129(6) Å].³

The NMR data for **2a** are in accord with the results of the crystal structure study. The ¹H NMR spectrum displays diagnostic peaks for the various groups present, including the diastereotopic protons of the BCH₂ group at δ 2.50 and 2.85 [*J*(AB) = 15 Hz] and those of the NH₂ group at δ 9.67 and 10.08 [*J*(HH) = 12 Hz]. The ¹³C{¹H} NMR spectrum shows characteristic peaks for the C=O (δ 177.9), cage carbon (δ 75.2), and BCH₂ (δ 31.0) groups, with the last signal broad as is usual.⁴ In the ¹¹B{¹H} NMR spectrum, the resonance for the

(4) Brew, S. A.; Stone, F. G. A. Adv. Organomet. Chem. 1993, 35, 135.

[†] This complex has a rhodium atom incorporated into a *closo*-1-carba-2-rhodadodecaborane structure. In order to relate the compound to the many known rhodium species with η^5 -coordinated cyclopentadienyl ligands, following precedent (Mullica, D. F.; Sappenfield, E. L.; Stone, F. G. A.; Woollam, S. F. *Organometallics* **1994**, *13*, 157), we treat the cage as a *nido* 11-vertex ligand with numbering as for an icosahedron from which the 12th vertex has been removed.

[‡] University of Bristol.

[§] Baylor University.

^{II} Permanent address: A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, Moscow 117813, Russia.

⁽¹⁾ Bregadze, V. I. Chem. Rev. 1992, 92, 209.

⁽²⁾ Jiang, W.; Knobler, C. B.; Mortimer, M. D.; Hawthorne, M. F. Angew. Chem., Int. Ed. Engl. 1995, 34, 1332.

⁽³⁾ Jeffery, J. C.; Lebedev, V. N.; Stone, F. G. A. Inorg. Chem. 1996, 35, 2967.

Table 1. Selected Internuclear Distances (Å) and Angles (deg) for $[RhBr(PPh_3)(\eta^5-7-NH_2Bu^L-8-CH_2CO_2Et-7-CB_{10}H_9)]$ (**2a**) with Estimated Standard Deviations in Parentheses

Rh-B(5)	2.135(3)	Rh-B(2)	2.142(3)	Rh-B(3)	2.156(3)	Rh-B(4)	2.191(3)
Rh-C(1)	2.243(2)	Rh-P	2.3492(8)	Rh-Br	2.5116(5)	P-C(21)	1.826(3)
P-C(31)	1.827(3)	P-C(11)	1.832(3)	N-C(1)	1.501(3)	N-C(2)	1.546(3)
C(2) - C(5)	1.519(4)	C(2) - C(3)	1.523(4)	C(2) - C(4)	1.526(4)	C(6) - C(7)	1.490(4)
B(5) - C(6)	1.643(4)	C(7) - O(1)	1.228(3)	C(7)-O(2)	1.320(3)	C(8)-O(2)	1.475(3)
C(8)-C(9)	1.496(4)						
B(5) - Rh - B(2)		83.44(11)	B(5)-Rh-B(3)	84.90(11)	B(2)-F	h-B(3)	51.90(11)
B(5)-Rh-B(4)		50.22(11)	B(2)-Rh-B(4)	86.32(11)	B(3)-F	h-B(4)	49.00(11)
B(5)-Rh-C(1)		47.39(9)	B(2)-Rh-C(1)	46.23(9)	B(3)-F	h-C(1)	82.87(10)
B(4)- Rh - $C(1)$		83.04(9)	B(5)-Rh-P	131.31(8)	B(2)-F	h−P	128.96(8)
B(3)-Rh-P		90.15(8)	B(4)-Rh-P	91.73(8)	C(1)-F	h−P	172.96(6)
B(5)-Rh-Br	1	19.00(8)	B(2)-Rh-Br	102.89(8)	B(3)-F	h−Br	145.22(8)
B(4)-Rh-Br	1	165.50(8)	C(1)-Rh-Br	95.18(6)	P-Rh-	Br	91.05(2)
C(21) - P - C(31)	1	107.21(12)	C(21) - P - C(11)	103.21(11)	C(31)-	P-C(11)	104.65(12)
C(21)-P-Rh	1	109.86(9)	C(31)-P-Rh	111.50(8)	C(11)-	P-Rh	119.52(8)
C(1) - N - C(2)	1	127.0(2)	C(5)-C(2)-C(3)	110.7(3)	C(5)-C	C(2) - C(4)	114.1(2)
C(3)-C(2)-C(4)) 1	109.6(2)	C(5) - C(2) - N	109.9(2)	C(3)-C	C(2)-N	101.7(2)
C(4) - C(2) - N	1	110.1(2)	C(7) - C(6) - B(5)	109.6(2)	O(1)-C	C(7) - O(2)	123.6(2)
O(1) - C(7) - C(6))]	123.3(2)	O(2) - C(7) - C(6)	113.1(2)	O(2)-O	C(8) - C(9)	106.4(3)
C(7) - O(2) - C(8)) 1	116 5(2)					

Chart 1

BCH₂ group is at δ 14.2 and remains a singlet in a fully coupled ¹¹B spectrum. The NMR data for **2b** are similar.

Formation of complexes 2 raised the possibility of whether reactions employing an excess of the reagent N₂C(H)CO₂Et would result in insertion of more than one C(H)CO₂Et fragment into the cage system of 1. It is noteworthy that, under appropriate conditions, up to three alkyne molecules RC≡CH can be inserted into the BH bonds of the pentagonal ligating CCBBB ring of an Ru(η^{5} -7,8-C₂B₉H₁₁) system.⁵ Accordingly, 1b was treated with a 2-fold excess of the diazo compound and the mixture chromatographed. Again, complex 2b was the major product, but a further species was isolated. Microanalytical data for the latter accorded with a formulation [RhCl- $(PPh_3)(\eta^5-7-NH_2Bu^t-7-CB_{10}H_8(CH_2CO_2Et)_2)]$ (3) corresponding to incorporation of two C(H)CO₂Et units from the diazoalkane. The ${}^{31}P{}^{1}H$ NMR spectrum of **3** would be expected to display a doublet resonance like that of the precursor 2b. However, examination of the spectrum revealed that it was formed as a mixture of two isomers since there were doublet signals at δ 28.3 [J(RhP) = 159 Hz] and 21.2 [J(RhP) = 131 Hz] of relative intensity ca. 3:1, respectively. Thus one isomer was predominant in the mixture.

Although the ³¹P{¹H} NMR data revealed the formation of two isomers of 3, there are three possible isomeric forms 3a-con the reasonable assumption that the two C(H)CO₂Et fragments insert into BH groups in the open face of the CBBBB ring (see Chart 1). Each isomer would be expected to reveal a doublet resonance in the ${}^{31}P{}^{1}H$ NMR spectrum. The ${}^{1}H$, ${}^{13}C{}^{1}H$, and ¹¹B{¹H} NMR spectra of the inseparable mixture were complex, resulting from overlapping peaks and the dominance of one isomer masking signals due to the other. The ¹H and ¹¹B{¹H} NMR spectra of the isomeric mixture did clearly show some peaks due to a major isomer, which is symmetrical, having a mirror plane bisecting the cage. This plane includes the cage carbon, the nitrogen, the rhodium, the chlorine, and the phosphorus atoms. Of the three possibilities 3a-c, only 3adisplays this symmetry, and we therefore designate 3a as the major isomer [RhCl(PPh₃)(η^{5} -7-NH₂Bu^t-8,11-(CH₂CO₂Et)₂-7- $(CB_{10}H_8)$]. In particular in the ¹H NMR spectrum, the region containing resonances due to BCH2 protons is relatively clean

⁽⁵⁾ Anderson, S.; Mullica, D. F.; Sappenfield, E. L; Stone, F. G. A. Organometallics 1996, 15, 1676.

formula	C27H42B10BrNO2PRh	μ (Mo K α) (mm ⁻¹)	1.724
$M_{ m r}$	734.51	F(000) (e)	1488
$T(\mathbf{K})$	173	crystal dimensions (mm)	$0.30 \times 0.30 \times 0.15$
crystal system	monoclinic	crystal color, shape	red plate
space group	$P2_{1}/c$	reflens measd	15 356
a (Å)	11.116(2)	no. of independent reflcns	6060
b (Å)	17.329(4)	2θ range (deg)	5.0-50.0
<i>c</i> (Å)	18.017(3)	refinement method	full-matrix least-squares on all F^2 data
β (deg)	95.49(1)	final residuals	$wR_2 = 0.066^a (R_1 = 0.027)^b$
$V(Å^3)$	3455(1)	weighting factors	$d = 0.0213; e = 3.100^{a}$
Z	4	goodness of fit on F^2	1.114
$d_{\rm calcd} ({ m g}{ m cm}^{-3})$	1.412	final electron density diff features (max/min) (e $Å^{-3}$)	0.41, -0.49

^{*a*} Structure was refined on F_o^2 using all data: $wR_2 = [\sum[w(F_o^2 - F_c^2)^2]/\sum w(F_o^2)^2]^{1/2}$ where $w^{-1} = [\sigma^2(F_o^2) + (dP)^2 + eP]$ and $P = [\max(F_o^2, 0) + 2F_c^2]/3$. ^{*b*} The value in parentheses is given for comparison with refinements based on F_o with a typical threshold of $F \ge 4\sigma(F)$ and $R_1 = \sum ||F_o| - |F_c||/\sum |F_o|$ and $w^{-1} = [\sigma^2(F_o) + gF_o^2]$.

and devoid of other complicated, overlapping signals. As expected for **3a**, only two AB signals are seen for the four BCH₂ protons at δ 2.87 and 3.09 [*J*(AB) = 13 Hz] as a result of the effect of the mirror plane. Other notable signals for **3a** include the NH₂ doublet resonances at δ 9.70 and 10.43 [*J*(HH) = 14 Hz]. Peaks corresponding to the NH₂ protons in the minor isomer were not discernible; however, the BCH₂ protons did give rise to four sets of weak AB signals as expected for a nonsymmetrical system (**3b** or **3c**). The ¹¹B{¹H} NMR spectrum for **3** shows a set of six signals of relative intensity 2:2:2:2:1:1, consistent with a symmetrical cage system in **3a**, in addition to other weaker signals for the minor isomer, which were not logged.

From this discussion we conclude that the major isomer formed is **3a** in which the two CH₂CO₂Et moieties are attached to borons α to the carbon vertex in the CBBBB ring. The

to borons α to the carbon vertex in the CBBBB ring. The precise nature of the minor isomer is uncertain, as the limited NMR data available do not allow us to discriminate between **3b** and **3c**, both of which are nonsymmetrical.

Experimental Section

All experiments were conducted under an atmosphere of dry nitrogen using Schlenk tube techniques. Solvents were freshly distilled under nitrogen from appropriate drying agents before use. Petroleum ether refers to that fraction of bp 40–60 °C. Chromatography columns (ca. 60 cm long and 1 cm in diameter) were packed with silica gel (Aldrich, 70–230 mesh). The NMR measurements were recorded at ambient temperatures at the following frequencies: ¹H at 360.13, ¹³C at 90.56, ¹¹B at 115.55, and ³¹P at 145.78 MHz. Chemical shifts (δ) are in ppm, and coupling constants (*J*) are in Hz. For the ³¹P{¹H} and ¹¹B{¹H} spectra, δ values are positive to high frequency of 85% H₃PO₄ (external) and BF₃·Et₂O (external), respectively. Peaks marked with an asterisk are due to a minor isomer. The complexes [RhX(PPh₃)(η^{5} -7-NH₂Bu^t-7-CB₁₀H₁₀)] (1) were prepared as previously described.³

Synthesis of the Complexes [RhX(PPh₃)(η^{5} -7-NH₂Bu^t-8-CH₂CO₂Et-7-CB₁₀H₉)]. A CH₂Cl₂ (20 mL) solution of 1a (0.180 g, 0.28 mmol) was treated with N2C(H)CO2Et (0.032 g, 29 µL, 0.28 mmol) and the mixture stirred for 2 h. Solvent was reduced in volume in vacuo to ca. 3 mL, and the mixture was chromatographed. Elution with CH₂-Cl₂-petroleum ether (1:4) yielded an orange-yellow fraction which, after removal of solvent in vacuo and crystallization of the residue from CH₂Cl₂-petroleum ether (5 mL, 1:7), gave [RhBr(PPh₃)(η⁵-7-NH2But-8-CH2CO2Et-7-CB10H9)] (2a) (0.120 g, 60%). Anal. Calcd for C₂₇H₄₂B₁₀BrNO₂PRh: C, 44.1; H, 5.7; N, 1.9. Found: C, 44.2; H, 5.7; N, 1.9. NMR (CD₂Cl₂): ¹H, δ 1.32 [d of d, 3 H, CH₂Me, J(HH) = 7 and 7], 1.61 (s, 9 H, Bu^t), 2.50, 2.85 [AB, 2 H, BCH₂, J(AB) = 15], 4.16-4.27 (m, 2 H, OCH2Me), 7.42-7.56 (m, 15 H, Ph), 9.67, 10.08 [d × 2, 2 H, NH₂, J(HH) = 12]; ¹³C{¹H}, δ 177.9 (C=O), 133.1-129.0 (Ph), 75.2 (br, CB10), 65.2 (OCH2), 62.6 (CMe3), 31.0 (br, BCH2), 26.9 (CMe₃), 14.2 (CH₂Me); ${}^{31}P{}^{1}H$, δ 33.5 [d, J(RhP) = 158]; ${}^{11}B$ -{¹H}, δ 14.2 (1 B, BCH₂), 9.6 (1 B), 6.7 (3 B), -5.4 (1 B), -12.9 (1 B), -14.3 (3 B).

Table 3. Atomic Positional Parameters (Fractional Coordinates $\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å² × 10³) for the Atoms of **2a**

atom	x	у	z	$U(eq)^a$
Rh	2522(1)	497(1)	2042(1)	24(1)
Br	1978(1)	378(1)	662(1)	39(1)
Р	3646(1)	1620(1)	1871(1)	28(1)
Ν	747(2)	-836(1)	1678(1)	28(1)
C(1)	1601(2)	-599(1)	2334(1)	26(1)
B(2)	3153(3)	-637(2)	2350(2)	30(1)
B(3)	3794(3)	168(2)	2967(2)	30(1)
B(4)	2534(3)	720(2)	3240(2)	30(1)
B(5)	1181(3)	250(2)	2781(2)	28(1)
B(6)	2309(3)	-1247(2)	2922(2)	33(1)
B(7)	3655(3)	-796(2)	3298(2)	36(1)
B(8)	3254(3)	12(2)	3850(2)	36(1)
B(9)	1635(3)	81(2)	3736(2)	35(1)
B(10)	1072(3)	-706(2)	3178(2)	31(1)
B(11)	2365(3)	-840(2)	3820(2)	39(1)
C(2)	504(3)	-1665(1)	1382(2)	38(1)
C(3)	-380(3)	-1518(2)	698(2)	51(1)
C(4)	-113(3)	-2139(2)	1950(2)	49(1)
C(5)	1667(3)	-2019(2)	1159(2)	51(1)
C(6)	-49(2)	714(1)	2460(2)	32(1)
C(7)	-1130(2)	226(2)	2549(2)	36(1)
C(8)	-2679(2)	-102(2)	3317(2)	47(1)
C(9)	-3067(3)	172(2)	4044(2)	54(1)
O(1)	-1455(2)	-303(1)	2123(1)	41(1)
O(2)	-1682(2)	408(1)	3142(1)	41(1)
C(11)	4099(2)	2241(1)	2672(1)	31(1)
C(12)	4990(3)	2004(2)	3218(2)	42(1)
C(13)	5259(3)	2442(2)	3857(2)	46(1)
C(14)	4657(3)	3126(2)	3955(2)	46(1)
C(15)	3790(3)	3372(2)	3413(2)	47(1)
C(16)	3509(2)	2936(2)	2775(2)	38(1)
C(21)	2780(2)	2269(1)	1225(1)	32(1)
C(22)	1561(3)	2364(2)	1309(2)	37(1)
C(23)	856(3)	2877(2)	872(2)	48(1)
C(24)	1366(4)	3297(2)	336(2)	60(1)
C(25)	2562(4)	3202(2)	232(2)	59(1)
C(26)	3286(3)	2691(2)	675(2)	45(1)
C(31)	5056(2)	1400(1)	1470(1)	32(1)
C(32)	5967(3)	1947(2)	1474(2)	50(1)
C(33)	7010(3)	1788(2)	1141(2)	58(1)
C(34)	7163(3)	1079(2)	813(2)	47(1)
C(35)	6270(3)	532(2)	811(2)	42(1)
C(36)	5218(3)	686(2)	1138(2)	36(1)

^{*a*} Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

A similar reaction between **1b** (0.160 g, 0.23 mmol) and N₂C(H)CO₂-Et (0.028 g, 26 μ L, 0.23 mmol) in CH₂Cl₂ (15 mL) gave [RhCl(PPh₃)(η^{5} -7-NH₂Buⁱ-8-CH₂CO₂Et-7-CB₁₀H₉)] (**2b**) (0.110 g, 70%). Anal. Calcd for C₂₇H₄₂B₁₀ClNO₂PRh: C, 47.0; H, 6.1; N, 2.0. Found: C, 46.9; H, 6.1; N, 1.9. NMR (CD₂Cl₂): ¹H, δ 1.35 [d of d, 3 H, CH₂*Me*, *J*(HH) = 9 and 9], 1.61 (s, 9 H, Bu^t), 2.61, 2.82 [AB, 2 H, BCH₂, *J*(AB) = 16], 4.20-4.26 (m, 2 H, OCH₂Me), 7.33-7.58 (m, 15 H, Ph), 9.66, 10.67 [d × 2, 2 H, NH₂, *J*(HH) = 13]; ¹³C{¹H}, δ 178.0 (C=O), 134.9127.0 (Ph), 75.8 [d of d, CB₁₀, *J*(RhC) = 45, *J*(PC) = 10], 64.7 (OCH₂), 62.6 (*C*Me₃), 31.2 (br, BCH₂), 27.0 (*CMe₃*), 14.1 (CH₂*Me*); ³¹P{¹H}, δ 33.2 [d, *J*(RhP) = 159]; ¹¹B{¹H}, δ 14.2 (1 B, BCH₂), 9.4 (1 B), 6.6 (3 B), -5.1 (1 B), -13.1 (1 B), -14.7 (3 B).

Synthesis of the Isomers [RhCl(PPh₃)(η^{5} -7-NH₂Bu^t-7-CB₁₀H₈-(CH2CO2Et)2)]. A mixture of 1b (0.160 g, 0.23 mmol) and N2C(H)CO2-Et (0.050 g, 55 µL, 0.49 mmol) was stirred in CH₂Cl₂ (20 mL) for 20 h. After solvent was removed in vacuo, the residue was treated with CH₂Cl₂ (5 mL) and the mixture added to silica gel (ca. 2 g) which was transferred to the top of a chromatography column. Elution with CH₂Cl₂ removed a fraction containing **2b** (0.07 g, 44%). Further elution with CH₂Cl₂-thf (9:1) removed a red eluate which, after removal of solvent in vacuo, gave red microcrystals of [RhCl(PPh₃)(η⁵-7-NH₂Bu^t- $7\text{-}CB_{10}H_8(CH_2CO_2Et)_2)]$ (3) (0.02 g, 11%). Anal. Calcd for $C_{31}H_{48}\text{-}$ B10CINO4PRh: C, 47.9; H, 6.2; N, 1.8. Found: C, 47.5; H, 6.0; N, 1.8. NMR (CD₂Cl₂): ¹H, δ *1.17-1.37 (m, 6 H, CH₂Me), 1.33 [d of d, 6 H, CH_2Me , J(HH) = 9 and 9], 1.58 (s, 9 H, Bu^t), *1.62 (s, 9 H, Bu^t), *2.00, *2.31 [AB, 2 H, BCH₂, J(AB) = 14], *2.48 [AB, 1 H, BCH₂, J(AB) = 18], 2.87, 3.09 [AB, 2 H, BCH₂, J(AB) = 13], *3.18 $[AB, 1 H, BCH_2, J(AB) = 18], 3.98 - 4.26 (m, 2 H, OCH_2Me), 7.42 -$ 7.58 (m, 15 H, Ph), 9.70, 10.43 [d \times 2, 2 H, NH₂, J(HH) = 14]; ³¹P-{¹H}, δ 28.3 [d, J(RhP) = 159] and *21.2 [d, J(RhP) = 131] with relative intensity 3:1; ¹¹B{¹H}, δ 11.7 (2 B, BCH₂), 9.4 (2 B), -5.6 (1 B), -8.7 (1 B), -13.4 (2 B), -14.4 (2 B).

X-ray Structure Determination. A summary of the crystal data is given in Table 2. Crystals of 2a were grown from CH₂Cl₂-petroleum ether (1:5), a suitable crystal was mounted on a glass fiber, and data

were collected on a Siemens SMART CCD area-detector three-circle diffractometer using Mo K α X-radiation. For three settings of ϕ , narrow data "frames" were collected for 0.3° increments in ω . A total of 1271 frames were collected, affording rather more than a hemisphere of data for the complex. After the data collection, the first 50 frames were recollected to establish that crystal decay had not taken place during measurements. The substantial redundancy in data allows empirical corrections to be applied using multiple measurements of equivalent reflections. Data frames were measured at 20 s per frame and integrated using SAINT.⁶

The structure was solved by conventional direct methods and was refined by full-matrix least-squares on all F^2 data using Siemens SHELTXL 5.03⁶ with anisotropic thermal parameters for all non-hydrogen atoms. The hydrogen atoms were included in calculated positions with isotropic thermal parameters. Atomic Coordinates are listed in Table 3. All calculations were performed on Silicon Graphics Iris, Indigo, or Indy computers.

Acknowledgment. We thank the Robert A. Welch Foundation for support (Grant AA-1201).

Supporting Information Available: Complete tables of bond lengths and angles, anisotropic thermal parameters, and hydrogen atom parameters for **2a** (6 pages). Ordering information is given on any current masthead page.

IC960450L

(6) Siemens X-ray Instruments, Madison, WI.